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SUMMARY

This paper considers the finite element approximation and algebraic solution of the pure Neumann
problem. Our goal is to present a concise variational framework for the finite element solution of
the Neumann problem that focuses on the interplay between the algebraic and variational problems.
While many of the results that stem from our analysis are known by some experts, they are seldom
derived in a rigorous fashion and remain part of numerical folklore. As a result, this knowledge is not
accessible (nor appreciated) by many practitioners—both novices and experts—in one source. Our
paper contributes a simple, yet insightful link between the continuous and algebraic variational forms
that will prove useful. Copyright (© 2001 John Wiley & Sons, Ltd.

KEY WORDS: finite elements, Neumann problem, Rayleigh-Ritz minimization, reqularization,
quadratic programming.

1. INTRODUCTION

This paper is concerned with finite element solution of the pure Neumann problem
0
—Au=finQ and 2 ponT (1)
on

where 2 C RY is a bounded open region with boundary I'. Solutions of (1) are determined up
to a constant® mode. The Fredholm Alternative implies that the source f must be orthogonal
to this mode, that is

/ f(x)dx = 0. (2)
o

A direct Galerkin discretization of (1)-(2) leads to a linear system with similar properties:
a stiffness matrix with a one-dimensional kernel and a source term that is orthogonal to
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81n the context of mechanical systems this mode is usually called a rigid body motion.
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2 P. BOCHEV, R. LEHOUCQ

this kernel. There are two basic approaches for computing a finite element solution from this
system. One, favored by some practitioners, is to constrain the candidate solution by specifying
its value at a node. This eliminates the null-space and allows one to solve the linear system
by a conventional (sparse) direct solver.

Alternatively, the solution can be computed from the consistent singular system either by
a properly modified direct procedure that recognizes (machine) zero pivot, or a minimization
based iterative solver such as conjugate gradients. This approach is less popular for three
reasons: special purpose direct solvers are required, there is a general aversion towards solving
singular systems, and many people are not aware that conjugate gradients work for positive
semi-definite consistent linear systems.

In the extant literature, both solution techniques are formulated directly for the discrete
problems without any connection to a variational problem. This situation is unsatisfactory
because under closer scrutiny both approaches reveal some unsettling details. For instance,
specifying solution datum at a node is inherently ambiguous, while roundoff error may render
the singular system inconsistent and prevent convergence of conjugate gradients. At the same
time, many well regarded FEM textbooks [2, 12, 5, 16, 8, 19, 18, 17, 11] provide only scant
information on these issues. As a rule, engineering texts limit their exposition to a brief, ad
hoc discussion of the first approach; see the recent textbook by Gresho and Sani [11, p.474],
or the classic text [2]. Mathematically oriented finite element books, on the other hand, focus
on variational problems posed in factor, or zero mean spaces [5, 10, 4], but do not discuss the
practical details of implementing conforming finite element methods in these settings. As for
the second approach, the solution of singular systems by the conjugate gradient algorithm is
rarely discussed outside the specialized literature on iterative solvers [1, 13] or sparse direct
solvers [15, 9].

The contribution of our paper is threefold. First, we seek to develop a unifying variational
framework for the finite element solution of the Neumann problem that embraces existing
solution techniques and presents a lucid connection between the algebraic equations and well-
posed variational problems. Second, with the aforementioned connection, we present several
new results that have not appeared, to best of our knowledge, in the literature. Third, we
address the impact of our choices when using an iterative method of solution instead of the
commonly studied impact on (sparse) direct methods for the solution of the linear system.

Since our analysis will recover widely practiced solution techniques, many of the results (and
conclusions) in this paper will probably be known to an expert in mathematical theory of finite
elements or an experienced practitioner of the method. Nevertheless, we feel that there is a
need to provide both novices and experts with a systematic presentation of the existing body
of knowledge. Moreover, our treatment reveals the common variational origins of seemingly
different solution techniques, allows for their rigorous mathematical analysis and suggests new
methods, a development that to the best of our knowledge has not appeared before in the
extant literature.

We mention that our approach can be applied with equal success to other problems where a
finite element discretization leads to a matrix with a non-trivial kernel. We have intentionally
chosen to focus on the Neumann problem so as to avoid unnecessary technical detail and
instead focus on the germane idea.

Finite element solution of the Neumann problem and all ensuing approaches can be
completely understood by realizing that there are two variational settings that give well-posed
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PURE NEUMANN PROBLEM 3

weak problems. Both are related to the energy functional of (1)

T(v, f) = %/QWU\Qda:—/vada: ()

but differ in the type of optimization involved—constrained vs. unconstrained. Without
constraints minimizers of (3) are determined up to a constant. The first variational setting
is to factor out the constants and minimize (3) on a factor space. This leads to finite element
methods that require solution of a singular linear system.

If we impose a suitable constraint, then (3) will have a unique minimizer in a standard
Sobolev space. This is the second variational setting, and depending on how the constraint
is introduced and implemented, a number of different methods follow. The standard way to
enforce a constraint is to use Lagrange multipliers. We show that the popular solution method
of fixing the datum at a point is simply an instance of this technique. Ultimately, solutions
of finite element problems obtained by Lagrange multipliers all reduce to variations of the
null-space method [14] for equality constrained quadratic programs (QPS).

A saddle-point Lagrangian formulation can also be regularized by relaxing the constraint.
This leads to a class of finite element methods that have not been previously documented in
the literature. Moreover, we show that these reqularized finite element formulations have some
attractive properties, especially in the context of iterative solution methods.

Throughout the paper we use the standard notation H*(£2) for a Sobolev space of order s
with norm and inner product given by |- ||s and (-, -)s, respectively. Seminorms on H*(§) will
be denoted by |- |5, 0 < k < s. For example, |uly = [, |Vu[>dz. For s = 0 we write L?(Q)
instead of H%(Q) and denote the resulting inner product by (-, -).

Since our study also makes use of matrix theory, we introduce some useful notation. With
{e;}}V, and Iy we denote the canonical basis on R" and the identity matrix of order N. For
x,y € RY the standard Euclidean norm and inner product are denoted by xTy and || - ||,
respectively. The ordering of the eigenvalues of a N x N matrix A is 0= X; < Ay <--- < Ap.

We call attention to our specific use of bold font for matrices and vectors. Elements of
matrices and vectors will be denoted by lower-case Greek letters.

2. PROJECTIONS AND INEQUALITIES

Two projection operators will play fundamental role throughout the paper. Let w be a smooth
function such that
(Lw)>0 (4)

and consider the subspace
H,(Q) = {u € H'(Q) | (u,w) = 0} (5)
of all functions in H'(£2) with zero w-mean. For any u € H*({2) we define the operators

() _
(1)

where u, = (u,w)/(1,w) is the normalized w-mean of u, and

(L)
o=t oy ™

Pou=1u— — Uy, (6)
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4 P. BOCHEV, R. LEHOUCQ

respectively. A direct calculation shows that P,u € HL(Q), Pru € HY(Q) N LE(Q) and that
P, and PZ are projectors. Therefore, P, is a projector H*(2) — HJ(Q) parallel to span(1)
and P* is a projector H(Q) — H!(2) N L3(Q2) parallel to span(w).

Lemma 1. P, and P’ are adjoint with respect to the L? inner product, that is

(Pou,v) = (u, Piv). (8)
Proof 1.
(P ) = (1= 0) = (1,0) = (121 1,0) = (10 = 0(1,0)/(1,)) = (1,PZ0).

Remark 1. We note that PLf =0 for w = f and that P, is self-adjoint when w = 1.

Friedrichs inequality [5, p.102] is fundamental for the analysis of the Neumann problem. A
generalized version of this result follows.

Lemma 2. Assume that Q is simply connected and that H*(Q) C L?(Q) with compact
imbedding. Then, there exists a positive constant C' such that

[Poullo < Cluly  and ullo < C(|uly + |uy|)  for every u € HY(Q). (9)

Proof 2. If the first inequality in (9) is not true, then there’s a sequence {uy} C H*(Q) such
that ||ugllh =1, uw k. =0, and |ug|1 < 1/k. This sequence has a subsequence, denoted again by
{uk} that converges weakly in H*(Q) and strongly in L*(Q) to some u. This and |ug|; < 1/k
imply that Vu =0 a.e. in Q and so u = const a.e. in ). Likewise,

/ uwdr = lim upwdr = 0.
Q

koo Jo

By assumption (1,w) > 0 and so u = 0. As a result, uy — 0 in H'(Q), a contradiction. The
second inequality follows by a similar compactness argument.

3. UNCONSTRAINED OPTIMIZATION SETTING

We consider the problem of minimizing (3) over the factor space H'(Q)/R:

i U 1
aciiin (@ 1) (10)
where f € L2(Q) is given and
HYQ)/R={ac H(Q)|u,v €t u—v=C} (11)

H'(Q)/R is a Hilbert space when equipped with the quotient norm
[ (o) /m = inf [[ullx (12)

and the mapping @ — |u|1, u € @ defines a norm equivalent to (12) [10, p. 13]. The Euler-
Lagrange equation for (10) is to seek @ € H'(Q)/R such that

A(a,0) = F(0) Vi e H'(Q)/R, (13)
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PURE NEUMANN PROBLEM 5

where
A, 0) = A(u,v) := / Vu-Vudr; w €, veED (14)
Q

is a bilinear form H(Q2)/R x H*(Q)/R — R, and
F(i) = F(u) == (f,u) wed, (15)

is a linear functional H'(€2)/R — R. Both (14) and (15) are well-defined because A(u; —us, -) =
A(~,v1 —v9) =0 and F(ul —ug) = C’fQ fdx = 0 whenever uq,us € 4, and v1,vs € 0. Because
| - |1 is equivalent to the quotient norm (12), the bilinear form (14) is continuous and coercive
on the quotient space. Hence (13) has a unique solution in H'(£2)/R.

4. CONSTRAINED OPTIMIZATION SETTING

To formulate a problem that has a unique minimizer out of H*() we will require all minimizers
to have a vanishing w-mean, that is we consider the problem

in J bject to  u,, = 0. 16
Lcin (u, f) subject to u (16)

The choice of w and the handling of the constraint in (16) provide a template for all finite
element methods for the Neumann problem. In view of Remark 1 w = f will be excluded from
the set of admissible weights.

4.1. A saddle-point formulation

We introduce a Lagrange multiplier 7 € R and consider the saddle-point optimization problem
(see problem 4.21 in [4, p 140])

inf  sup (J(u, f) + Tuy) - 17
Lnt L sup (J(u, f) + 7 (17)

The saddle-point (u,7) € H(Q) x R of (17) solves the first-order optimality system

A(u,v) + 7v, = F(v) Vv e HY(Q) (18)
ou, = 0 Vo € R.
Theorem 1. Problem (18) has a unique solution (u,T) for any f € L*().

Proof 3. We apply the abstract theory of [6] and so we must show that there exists a v > 0
for every T so that the form b(T,u) = Tu,, satisfies the inf-sup condition

b
sup (7,u)

> 7],
uEH(Q) HU||1

We equivalently show that for a given 7 € R there exists u € H'(Q) such that b(r,u) >
Y|ull1|7|. Choosing u =1 gives |ju|ly = \/meas(Q) and

b(r,u) = 7(1,w)/(l,w) =7,
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Prepared using nmeauth.cls



6 P. BOCHEV, R. LEHOUCQ

and so the inf-sup condition clearly holds with v = 1/y/meas(Q2). To show that A(-,-) is coercive
on the kernel
Z={uec HY(Q)|b(r,u) =0 VrecR}.

we observe that Z = HL(Q). The generalized Friedrichs inequality (9) implies that |uly is an
equivalent norm on HL () and because A(u,u) = |u|?, we conclude that this form is coercive
on Z. Existence and uniqueness of a saddle-point (u,T) now follows from [6].

Restriction of (16) to Z gives the equivalent, unconstrained, reduced problem

i . 1
LS J(u, f) (19)

The Euler-Lagrange equation of the reduced problem is

seek u € H!(Q) such that A(u,v) = F(v) Yv e HL(Q). (20)
Theorem 1 asserts that A(-,-) is coercive bilinear form on HL(2) x HL(£2). Therefore, the
Lax-Milgram Lemma implies that (20) is a well-posed problem for any f € L?(2).

In summary, we have the choice of either the saddle-point problem (18) or the coercive
problem (20).

4.2. A stabilized saddle-point formulation

We can modify (17) by stabilizing the Lagrangian functional
1

inf J(u, f) + 1uy — —712 |, 21

wel () 7k ( () = g,7 ) 2!

where p > 0 is a stabilizing parameter. The optimality system for (21) is to seek (u,7) €
H'(Q) x R such that

A(u,v) + 1v, = F(v) Vo € HY(Q)
ou, = plor Vo € R. (22)
The Lagrange multiplier can be eliminated from (22) to obtain the regularized problem
A,(u,v) = F(v) Yve HY(Q), (23)
where
Ay(u,v) = A(u, v) + puyv, = /QVu - Vudz + puyv,. (24)

We remark that (23) is a first-order optimality system for the unconstrained minimization of
the penalized energy functional:

. P 2\ _ .
Jamin (G D)+ Gu) = min (o f). (25)

Theorem 2. For every f € L?(Q) problem (25) has a unique minimizer u € H'(Q).
Proof 4. From (9) we see that
Ap(u,u) = Julf + pud, > Cllull?,

that is, (24) is coercive on H'(Q) x HY(Q). Continuity of this form and F(-) are obvious and
so, we can conclude that the reqularized problem has a unique solution. O

Therefore, in the present setting we can choose between the regularized saddle-point problem

(22), or the coercive problem (23).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 00:1-6
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PURE NEUMANN PROBLEM 7

4.8. Characterization of solutions

We now consider the relationship between the solutions obtained from the constrained
optimization setting and the original Neumann problem. Without stabilization we have the
choice of (18) or (20), with stabilization the choice is between (21) or (23). However, within
each pair the same weak solution u will be generated and so it suffices to consider the two
coercive equations, that is (21) and (23).

If f € LE(Q), both (19) and (25) have solutions that belong to a minimizing class of (10).
However, (10) is not well-posed unless f € L2(9), while the weak problems (20) and (23) are
coercive and solvable for any f € L?(2). Our next result shows that when f does not satisfy
the compatibility condition (2) solutions computed by (20) and (23) solve a Neumann problem
with a modified source term.

Theorem 3. Let @ denote a solution of (23) (respectively (20)). For any f € L*(Q2)
ﬂw = O((f, 1)7 (26)
where o = 1/p for (23) and oo = 0 for (20). If a € H*(Q), then @ solves the Neumann problem

—Au=PLf inQ and %:O onT.
on

Proof 5. For @ computed by (20) formula (26) is trivially true since @ € HL(Q). To prove
(26) for (23) insert v =1 in (23) to obtain
P .
(.f7 1) = (1,&))2 (u,w)(l,w) = PUy-
Let @ € H?(Q) solve (23). Integrating (23) by parts gives

G +wﬁ(ﬂ7u)),v)+ < %,v >r=0 Yve HY(Q).
From (26) p(i,w)/(1,w)? = (f,1)/(1,w), so v € H(Q) implies
NG = (f —w(f, 1)/ (Lw) = —Ad—PLf = 0.

Choosing v # 0 on T" recovers the Neumann boundary condition.
Let @ € H?(Q) denote a solution of (20). Since P, v € HL(Q),

A(a, P,v) = F(P,v) Yve HY(Q).
From the definition of A(-,-), (6), and Lemma 1
A(t, Pyv) = A(td,v) and (f,P,v) = (P5f,v),

and so
A(a,v) = (Pif,v) Yo € HY(Q).

Integrating this identity by parts gives
0
(=it — PEfv)+ < 8—z,v >r=0 Yoe H'(Q).
The theorem follows by first choosing v € H}(Q) and then v € H*(Q). O

Corollary 1. If f € L3(Q) solutions of the reduced and regularized problems coincide.

Proof 6. Let u® solve (23). From (26) it is clear that uff = 0 whenever f € L%(Q), that is
uft € HL(Q). Now it is easy to see that u® also satisfies the weak problem (20). O

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 00:1-6
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8 P. BOCHEV, R. LEHOUCQ

5. FINITE ELEMENT SOLUTION

Throughout this section 7 denotes a uniformly regular triangulation of 2 into finite elements.
For brevity we restrict attention to planar regions, triangular elements and Lagrangian finite
element spaces P¥; see [4] for details. The coefficient vector of uj, € P* with respect to a nodal
basis {¢?}X | is denoted by u.

Formulation of finite element methods will be based on the link between optimization and
the Neumann problem established in §§3-4. Thus, we identify finite element solution of (1)
with the computation of approximate minimizers or saddle-points out of some P¥. To state the
algebraic problems that will arise in the solution process we shall need the symmetric positive
semi-definite stiffness matrix A with element 4, j

A=Al er), dij=1,...,N. (27)

We denote the j-th column of A by Aj; f; = F(¢!) is the i-th element of the discrete source
term f and w; = (¢?,w) is the weighted basis mean vector. When w = 1 we will use z instead
of w. For a nodal basis A has a kernel spanned by the constant vector ¢ = (1,...,1)T. If M is
the mass matrix with element M; ; = ( ?, #™) the relationships z = Mc and (uy,v,) = ul Mv
hold. The last expression is the discrete L?(£2) inner product of uj, and vy.

5.1. Finite elements in the unconstrained setting

In mathematical finite element texts the use of (13) as a well-posed weak form for the Neumann
problem is standard. In contrast, this setting has found limited acceptance among practitioners
because formally it requires a finite element subspace P*/R of H'(2)/R, formulation of the
ensuing method is never clarified, and the matrix problem is singular. However, the ambiguities
of a factor space setting can be easily avoided within the optimization framework. Since P*/R
is isomorphic to RY /(ker(A) = ¢) the discrete equivalent of (10) and its algebraic form are

1.0 .
min J(@", f)= min —alAa—alf (28)
akePk /R GERN /c
Therefore, a finite element method in the factor space setting simply amounts to computation
of an arbitrary member from the minimizing class @". Such a member can be determined by

solving the linear system
Aa=f (29)

by a sparse direct method modified so that a zero pivot can be detected. However, floating
point arithmetic complicates this decision because the solver needs to decide when a pivot is
negligible. Instead we recommend an iterative scheme be applied directly to (28). Indeed, as
long as the f is in the range of A the quadratic functional in (28) has a finite lower bound. As
a result, the conjugate gradient algorithm will generate a minimizing sequence that converges
modulo ker(A); see Theorem 13.11, [1, p. 583]. The rate of convergence of the conjugate
gradient algorithm depends on the ratio x.(A) = An(A)/A2(A) or the effective condition
number.

An important practical consideration for (29) is that the discrete source f must be discretely
orthogonal to the constant vector ¢ and Ac = 0. Since (1, f) = c¢’f in exact arithmetic, the
linear system will be consistent whenever the Neumann problem is solvable, that is when f
has zero mean. In practice the source f and the matrix A are computed in floating point

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 00:1-6
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Table I. Loss of consistency in (29) within CG. x\9) denotes the CG solution at the j-th iteration.

PURE NEUMANN PROBLEM

P! clements - nonuniform

P? clements - nonuniform

Quad. cTf iter | [|f — AxU)| cTf iter | [If — AxU||
1 -2.522E-03 | 1000 0.38000 -1.857E-03 | underintegrated A
3 3.069E-05 | 208 | 0.1242E-05 1.610E-04 | 1000 | 0.2128E4-02
7 -2.744E-09 | 85 0.1329E-05 || -2.023E-08 | 169 | 0.8327E-06

P5 elements - uniform
-3.123E-16 | 54 | 0.7439E-06

Py elements - uniform
3 | 4.628E-15 | 55 | 0.9786E-05

arithmetic via quadrature. As a result, ¢’ f equals (1, f) only approximately and (29) may
become inconsistent. To restore consistency we take a cue from Theorem 3 and introduce the
discrete projector (PTf); = (P*f,#),i=1,...,N. A direct calculation shows that

WCT

Pl =1-

wlc’
Application of the projector to the linear system results in

(PTAP)u = P'f. (30)
The matrix P is the discrete analogue of the projector P, and so the FEM solution Pu has
zero w-mean, that is w” Pu = 0. We remark that the iterative solution of semi-definite systems
and application of projectors is rarely discussed beyond specialized texts on iterative solvers
and does not seem to be widely known among finite element practitioners. This is another
reason for the limited use of (29).

Let us demonstrate that the use of a projector to maintain consistency of (29) is not
unfounded, especially for unstructured meshes. To test effects of numerical quadrature we
consider the zero mean source f defined by evaluating (1) at u(x,y) = cos(rz?)cos(2my)
on the unit square. We solve (29) with discrete sources f computed using linear (1 point),
quadratic (3 point) and quintic (7 point) quadrature rules [7, p.343].

Table I shows that for P? elements on non-uniform meshes, the 3 point rule leads to a
numerically inconsistent linear system and so the conjugate gradient algorithm diverges. For
nonuniform P! elements the 3 point rule does suffice but requires 2.5 times more conjugate
gradient iterations than the 7 point rule.

On uniform grids all three quadrature rules led to a discrete source f with ezact zero mean
and a consistent (to machine precision) linear system. Table I shows that in this case conjugate
gradients converged without a difficulty. This contrasting behavior clearly demonstrates the
importance of maintaining consistency in (29).

5.2. Finite elements in the constrained setting
The starting point now is the constrained problem (16). To define a finite element solution we

restrict minimization of (16) to a subspace P* of H'(£2) and note that uy, ., = 0 if and only if

Copyright © 2001 John Wiley & Sons, Ltd.
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10 P. BOCHEV, R. LEHOUCQ

ulw = 0. As a result, the discrete equivalent of (16) and its algebraic form are
1
min J(up, f) = min —u’ Au—u’f. (31)
up Pk uerN 2
uhyw=0 wTu=0

In the optimization literature (31) is known as an equality constrained quadratic program [14].
This quadratic program can be solved in a number of ways. In all cases however, we are led to
an algebraic equation that is related to one of the four variational problems (18), (20), (21),
or (23). In what follows we consider the variational settings of §4.1 and §4.2 and demonstrate
their relationship with (31).

5.2.1. The saddle-point formulation The algebraic equivalent of saddle-point equation (18)
is a symmetric, indefinite linear system.

Crlbr @9 () =(1)

This system can be obtained directly from (31) by introducing a Lagrange multiplier for the
algebraic constraint. The matrix in (32) is called the Karush-Kuhn-Tucker (KKT) matrix. One
way to compute a finite element approximation is to solve (32) by either a sparse direct method
or an iterative method. Another approach that exploits the structure in the KKT matrix is
the null-space method. The alternative range-space method requires that A is nonsingular and
is not applicable to (32).

The constraint w”u = 0 implies that the minimizer belongs to the space spam(w)l or,
equivalently, the null-space of w”. Let B € RV*(V=1) denote a matrix whose columns form a
basis for span(w)®. Then u = Bv and (31) is equivalent to an unconstrained problem

1

min -v'BTABv — v/ BTf (33)
vERN-1 2

in terms of v. The null-space method for (32) amounts to constructing the matrix B and

solving the symmetric positive definite linear system

BYABv = B”f. (34)

The null-space method is the variational equivalent of “minimization on the kernel” that
gave the reduced problem (19). Let us show that conforming discretization of (19) is in turn
equivalent to an explicit method for constructing the matrix B. For this purpose we restrict
(19) to a finite element subspace P* = P* N H(Q) of HL(Q). Since P* is isomorphic with
RN~1 the discrete minimization problem and its algebraic form are

L 7
min J(up, f) = min v A,v —vif,, 35

up€PE ( h f) vERN-1 2 i @ ( )
where A, f,, and v denote a stiffness matrix, right hand side and a coefficient vector relative
to some basis {1; fV: 7' of P¥. Let B denote the transformation matrix between this basis and
the standard nodal basis of P*. If u contains the nodal coefficients of uy, relative to P* and v
are the coefficients of this function relative to the basis in P¥ then

u=Bv and A, =BTAB.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 00:1-6
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Because A(-, -) is coercive on HL(2) x HL(Q) and P* ¢ H!(Q) the matrix A, is symmetric
and positive definite.

In general, {1;}Y 7! need not be a nodal basis. In this case the coefficients in v are linear
combinations of the nodal values in u. Because nodal bases are easier to work with let us
show how one can be constructed for a given weight w. Suppose that¥ (¢}, w) # 0 for some
¢ between 1 and N. Solving (up,w) = Zil a;(¢l,w) = 0, for the fth term gives the set of
functions (@)

h h n\@i, W . . .

i = 9 %(qbg,w) i=1,...,N; i#/¢ (36)
parameterized by ¢, and a space P* = span{wﬁg}i# C HL(Q). Note that P* does not have a
degree of freedom associated with the (arbitrarily chosen) triangulation node x,. By definition
(¢, w) = 0, and 9", (;) = d;; and so (36) is a nodal basis. The following result explains how
the transformation matrix B can be constructed without forming explicitly the basis (36).

Theorem 4. The transformation matriz for the basis (36) is

T
Br. = (1- S5 )Ty
€, w

where 1% denotes a unit matriz with deleted (" row and column.

Proof 7. Given a node x, € T;, the entries of A, are

h h
Auliod) = AW vl = Al o) = EESLAh o) — S Al o)
)]
) (37
Since A( ?,qﬁ?) = A, ; and (¢, w) = w;,
A, = (I?V)T(A - ﬁ( AT 4+ AwT) + (eﬁi’j)zwa)va ~BY_AB,, O ()
(4 (4

Consider now a situation where w = e so that the constraint in (31) is e/ u = 0. In this
case Theorem 4 gives the transformation matrix as

B:@_wgﬁgzm.

Therefore, A,, is simply A with deleted /** row and column. Note that el u = 0 is the same
as up(z¢) = 0 and so this is simply the standard method of specifying the solution value at a
node and is a variant of the null-space method.

Our framework allows us to establish an interesting link between the linear system and
a variational equation. Let ¢? denote the basis function associated with node x; in some
triangulation 75, and consider a weight function wy, ¢ such that

(P wne) =1 and (¢F wne) =0 fork #4. (39)

9This assumption is necessary because Lagrangian basis functions may have zero mean. One example is given
by the P? basis functions associated with the nodes of a triangulation.
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12 P. BOCHEV, R. LEHOUCQ

Then w = e, and fixing the solution value can be viewed as a conforming discretization of the
saddle-point (18) or the reduced (20) problems with a constraint given by

(wh7g, u) =0.

While the choice of wy, ¢ is not unique, (39) formally implies that wy, ¢ — (z¢) as 7Ty, is refined.
Because the delta function is in the dual of H'(Q) only in one dimension, this constraint
will become ill-posed in two and three dimensions as h — 0. We conclude that specifying the
solution at a node leads to a ill-posed variational problem in two and three dimensions.

This, and the arbitrary choice of x, raises two questions about the resulting algebraic
systems that, to the best of our knowledge, have not been yet discussed in the literature.
The first, and more obvious question, is whether or not the choice of x, has any impact on
the conditioning of the linear systems. The second, more subtle question, is how these systems
behave asymptotically as h — 0. The answer to the first question is important because a
customary choice for x, is usually at the corners of Q0 and so we want to know whether or
not this is the best possible location. The relevance of the second question stems from the
degeneration of the associated variational problem as h — 0. To address these issues we recall
a standard finite element result.

Lemma 3. Let V" denote an H' conforming finite element space and assume that there exists
a constant CI'L; such that a discrete Poincaré inequality ~

Chllunllo < [IVunllo (40)
holds for any uy, € V. Then, there exists C > 0 such that

cond(Ay) < h™2 (41)

o
where Ay, is generated by A(-,-).

The discrete Poincaré inequality that is relevant to our discussion is established in the next
Theorem. For brevity we consider the case when © is the unit cube in R where d = 1,2, 3.

Theorem 5. Let Q = (0,1)? and I'p C 0Q be the Dirichlet portion of the boundary. If
meas(I'p) > 0 and up, =0 on T'p then,

Chllunllo < |unlt (42)

where

ch = (L)l/2 and

| meas(T'p) ford>1
9d—1 -

H 1 ford=1
Proof 8. Without loss of generality, T'p = {(0,y)]|0 <y < yp} and let x = (z,y) € Q be
arbitrary. For § < yp the points x, x1 = (x,4) and xp = (0,4) form a path from x to I'p.
Because up, € HY(Q) N CY(Q), and up(xp) =0

up(x,y) = up(z,9) + uhyﬂﬁn

7
Squaring both sides, using Cauchy’s inequality and integrating along I'p gives

1
meas(T p)up?(z,y) < 2/ u (x,m)dn + Zmeas(FD)/ u%,y(m,n)dn.
0

I'p
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PURE NEUMANN PROBLEM 13

To estimate the right hand side note that

u(e.g) = un(xt) = ulxp) + [ o€, 9)dE = / "o (€, ).

0

Cauchy’s inequality and integration along I'p give

/ Ui(iﬂ,n)dné/Ui,x(f,n)dfdn
I'p Q

and therefore,

d
meas(Tp)us(z,y) <2 [/Q ufm(z,y)dxdermeas(FD)/ ufl,y(z,n)dn] .
0

Integrating both sides over Q and noting that meas(Q) = 1 completes the proof in two
dimensions. The other cases follow in a similar manner.

Theorem 5 proves fundamental for the understanding of the asymptotic behavior of the
matrices obtained by deleting a row and a column in the singular matrix A. Suppose that d > 1
and x; € 9. Therefore, the linear system (34) is formally associated with a mixed boundary
value problem where I'p = supp(wp, ¢) N IQ. Because wy, o approaches a delta function located
at x; then meas(I'p) = O(h9™1) easily follows. As a result,

C 3+d

cond(A,, ) <h?—=0(h""7 ). (43)
» CP

Corollary 2. Let x,; denote the center of Q. If
Ip={x=(¢....69) € Q¢ € [€y — o,y +a],i # k),

that is, I'p lies on the center of a plane perpendicular to the kth coordinate direction that
coincides with xpr, then (42) holds with

Oy =200,

Proof 9. We apply (42) to the 2V identical subdomains Q. obtained by cutting Q through x s
by planes perpendicular to the N coordinate directions. The side length of each Qy equals d/2
and meas(T'p N 0Qx) = meas(Tp) /2N~ As a result, (42) holds on each Q. with

chy? = 22y
( M) - 2d—1(1/2)d+1 T 9d—19d-1

— (20%)° .
The proof follows by summing up (42) for all subdomains.

This corollary reveals that the optimal location for x; is the barycenter of 2. The ratio
between the Poincaré constants when I'p C 92 and when x;; € I'p is 2. As a result, fixing
the solution value at the boundary can lead to a condition number that is up to four times
larger than when the solution is fixed at x5;. In one dimension, on a uniform grid, this bound
is sharp and can be established by Fourier analysis.
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PL el ements P1L el ements P1 el ements

10 12.5

P2 el enents

Figure 1. k(A,,, ,) for P! elements: uniform and nonuniform grids on [0, 1> and nonuniform grid for
Texas shaped region.

Lemma 4. Let N =1, and A, ,, Au, ,, denote the matrices corresponding to solution value
fized at an endpoint and the barycenter Xy, respectively. Then

cond(A,, 1)

— P 49 h
cond(Awh’M) +0(n)

For the proof of this lemma we refer to [3]. In more than one dimension optimality of the
barycenter can be confirmed numerically. Figure 1 shows plots of the condition number of
A, , as a function of the node location for three different triangulations and P! elements. In
all three cases the condition number is minimized when x; is near or at the centroid of the
region, while the corners lead to the highest condition number. These patterns were observed [3]
for other regions and elements, including P? elements.

5.2.2. The stabilized saddle-point formulation The linear system

s S ) (2)=(5)

is the algebraic equivalent of the stabilized saddle-point problem (21). As in §4.2, the Lagrange
multiplier can be eliminated to obtain a system only in terms of u:

_ P T
Au= A+ ——ww' |u=Hf. 45
’ ( (whc)? ) )
This equation is the necessary condition for the quadratic program
L 7 T (w'u)?

min J,(up, f) = min —u" Au—u' f + p——=, 46

up EP* P( h f) WeRN 2 p(WTC)2 ( )
Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 00:1-6
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PURE NEUMANN PROBLEM 15

Table II. CG solution of (45). x) denotes the CG solution at the j-th iteration.

P; elements - nonuniform P, elements - nonuniform
Quad. cT'f iter | ||f — AxW)|| cTf iter | ||f — AxY)|
1 -2.522E-03 | 85 | 0.1358E-05 || -1.857E-03 | underintegrated A

3 3.069E-05 | 85 | 0.1242E-05 1.610E-04 | 169 | 0.8667E-06
7 -2.744E-09 | 85 | 0.1329E-05 | -2.023E-08 | 169 | 0.8327E-06

that is a discrete counterpart of (25). From Theorem 2 it follows that A, is symmetric and
positive definite. The sparsity pattern of A, depends on the choice of w because A, is a rank-
one correction of the singular matrix A. If support of w overlaps with only a few elements in
71, the vector w will have only a few non-zero entries and A, will have a sparsity pattern
similar to that of A. In this case a sparse direct solver can be used.

When the support of w is larger, for instance if w = 1, then ww” is dense and formally,
A, is also dense. While a direct elimination is not practical in this case, (45) can be solved
iteratively for almost the same cost as (29). Typically, an iterative solver requires one matrix
vector product A u per iteration. This product can be computed by

1. forming the vector v = Au;
2. computing the scalar u = p(wlu);
3. updating v + pw.

Step 1 is standard part of any finite element solver, so the only additional work involved is the
dot product in step 2 (2N — 1 flops) and the update in step 3 (2N flops). The row vector w’
can be precomputed and stored rendering the computation of u efficient.

Theorem 2 also implies that the regularized system (45) must be solvable for any discrete
source f. This means that iterative solver performance should not degrade as in Table I for low
order quadrature. Table II contains convergence history for Jacobi preconditioned conjugate
gradients applied to (45) and the same exact solution as in Section 5.1. Regardless of the
quadrature we see identical convergence of the solver.

The following theorem proves fundamental for understanding the structure of A, and how
the rank-one update modifies the null-space of A.

Theorem 6. Let QAQT denote the eigendecomposition of the singular stiffness matriz A,
with Qe; = N~Y2¢c and Ac = 0. If w = ||w|| cos(¢)c + r, where r’c = 0 and ¢ measures the
positive angle between ¢ and w, then

1A, — Q(A + pllwl[? cos®(d)ere] ) QT || < pl|wl|*(sin(2¢) + sin*(¢)). (47)
Proof 10. From the identity
A, =A+ pww! = Q(A + p(QTw)(QTw)" QT
and the hypothesis on Qey, we have

Q'w = Q" ([[wllcos(¢)c + 1) = |[w] cos(d)er + Q"r

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 00:1-6
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Growith in conjugate gradient iterations for a 2D stiffness matrix
T
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Figure 2. Growth in conjugate gradient iterations for the solution of (45) vs. (34) for a stiffness matrix
from a bilinear quadrilateral approximation of a two dimensional problem. Two choices of B = I
corresponding to specifying the center and corner nodal coefficient are used.

and hence
T T o\ T T 7\
Q'w(@Q™wW)T = (|wllcos(d)er + QTr) (Jlw cos(d)er + QTr)
[w* cos® pere] + [[w| cos(¢)QT ref + |[wl| cos(¢)eir” Q + QTr(Q"T)".
The theorem now easily follows by noting that |QTr(QTr)T|| = |Ir||?, |QTrel|| = |r|/|lei|| =
[rll, and |[r]] = [[w|[sin(¢). O

This theorem shows that with a proper choice of p the rank-one update modifies the zero
eigenvalue of A to a positive one and only perturbs the eigenvectors. Furthermore,

Apc = pl[wl[? cos®(¢)c + pllwl| cos(o)r,

that is, the constant mode of A is an approximate eigenvector of A ,. Moreover, if p is between
A2 and Ay then condition number of A, equals the effective condition number of A.

Recall that (43) implies condition numbers higher than the effective condition number
whenever solution is being specified at a point. This can be confirmed by comparing the
conjugate gradient convergence of (45) and (34) when B = If,. Figures 2-3 show the
results when the pure Neumann problem is solved on the unit square and on the unit cube
by bilinear and trilinear finite elements, respectively. The zero mean sources Au(z,y) =
A cos(ma?) cos(2my) and Au(z,y,2) = A cos(ma?) cos(27my) cos(z3m) are used. The choices
of B = I correspond to specifying the center and the corner nodal coefficients. Figures 2-3
reveal a substantial and growing gap between the iteration counts for the regularized approach
and that of specifying the solution at a point. Figure 4, on the other hand, shows that with
respect to the mesh size this gap grows faster in three dimensions, and hence supports the
conclusion of (43) and Theorem 5.
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Growith in conjugate gradient iterations for a 3D stiffness matrix
300 T T T T T T T T

O regularize o
% Binnin the center o
250 g o B
=
o
a
o x
200 5 . |
o x
o X
a
5 «
1501 . x |
x o
o x o ©
a o o
o x o ©
x o
100} 2 * o © B
5 x
x o ©
o 0 o
o o
o o
X o o
50t ° |
1) o
o , . . . , . , .
10 15 20 25 30 35 40 5 50 55

Number of elements in one space dimension

Figure 3. Growth in conjugate gradient iterations for the solution of (45) vs. (34) for a stiffness matrix

from a trilinear quadrilateral approximation of a three dimensional problem. Two choices of B = I
corresponding to specifying the center and corner nodal coefficient are used.
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Figure 4. Ratio of the number of regularized to pinned at the center conjugate gradient iterations.

6. CONCLUSIONS

We demonstrated that finite element methods for the Neumann problem originate from two
optimization settings. The first requires minimization of a quadratic energy functional on a
factor space and leads to singular linear systems. These systems can be solved iteratively
provided consistency is maintained by a discrete projector to ensure that the source remains
discretely orthogonal to the constant mode.

The second optimization setting involves constrained minimization of a quadratic functional
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18 P. BOCHEV, R. LEHOUCQ

and leads to an equality constrained quadratic program. The manner in which the constraint
is treated defines yet another two classes of finite element methods, while the choice of the
constraint describes the different methods within each class.

The first class corresponds to the application of the null-space method for the solution of
the quadratic program. The method of specifying a solution value at a node is an instance
of this class. Moreover, we established that this method can be associated with a variational
formulation involving a weight function approaching a delta function as h — 0. As a result,
condition numbers of the resulting matrices are larger than the effective condition number of
the singular matrix. Our analysis also indicates that the optimal location for the fixed value
node is at the barycenter of ), a result that is also confirmed by numerical experiments.

The second class of finite element methods corresponds to a regularized formulation of
the constrained minimization problem. Here we were led to a new class of methods for
the Neumann problem that provide symmetric positive definite linear systems with effective
condition numbers. Moreover, the sparsity pattern of the rank one update can be controlled so
as to match the sparsity pattern of the singular matrix by taking a weight function with the
appropriate support. We recommend the regularized method whenever an iterative solution
method is used to compute the finite element solution.
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